
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Thesis

AXI OVER ETHERNET: REMOTE MEMORY

TRANSACTION ANALYSIS VIA NETWORKED BUS

TRAFFIC FORWARDING

by

PATRICK CARPANEDO

B.A., College of the Holy Cross, 2020

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2025

© 2025 by
PATRICK CARPANEDO
All rights reserved

Approved by

First Reader

Renato Mancuso, PhD
Associate Professor of Computer Science

Second Reader

John Liagouris
Assistant Professor of Computer Science

Third Reader

Sabrina Neuman
Assistant Professor of Computer Science

We absolutely must leave room for doubt or there is no progress and there
is no learning. There is no learning without having to pose a question.
And a question requires doubt. People search for certainty. But there is
no certainty. People are terrified — how can you live and not know? It is
not odd at all. You only think you know, as a matter of fact. And most
of your actions are based on incomplete knowledge and you really don’t
know what it is all about, or what the purpose of the world is, or know a
great deal of other things. It is possible to live and not know.
-Richard P. Feynman

iv

Acknowledgments

I want to thank my advisor, Prof. Renato Mancuso, for his patience and guidance.

I want to thank the people in the systems group for the helpful discussions and

feedback. Special thanks to my labmates in the Cyber-Physical Systems lab for the

great conversations and for putting up with my constant questions. Especially to

Mattia Nicolella, Bassel El Mabsout, Francesco Ciraolo, and Dennis Hoornaert for

the great conversations, help, and support in making this thesis. Also, I want to

extend a special thanks to my family and friends for their support and love. Of

course, I want to thank my partner, Sisary, for her love and support in this journey.

v

AXI OVER ETHERNET: REMOTE MEMORY

TRANSACTION ANALYSIS VIA NETWORKED BUS

TRAFFIC FORWARDING

PATRICK CARPANEDO

ABSTRACT

Modern systems are approaching exceedingly complex designs as manufacturers

are incorporating heterogeneous CPU architectures, hardware accelerators, and spe-

cialized components to address the growing amount of raw data input and the need

for diverse computing resources. However, the cost of complexity has exacerbated

issues with security, power efficiency, and temporal predictability. The common

denominators are a lack of understanding and limited monitoring of the complex

interplay between software and hardware components. Efforts have been made to

address these pitfalls by introducing methods such as software/hardware container-

ization, optimized schedulers, and software standards/certifications. These methods

have shown considerable improvements in strengthening the security properties of

complex systems, achieving power trade-offs, and mitigating key sources of temporal

non-determinism. Recent trends in computing models have given ground for new

techniques that increase the amount of introspection in complex systems. In partic-

ular, given the rise in popularity of programmable logic, vendors are manufacturing

tightly coupled FPGAs co-located with traditional compute clusters expanding the

hardware/software co-design opportunities with incredible flexibility. We postulate

that this model enables remote access to metadata and data traces that are histori-

cally confined on-chip.

The proposal of this thesis is to design, implement, and evaluate proof-of-concept

vi

mechanisms with a twofold goal. First, we aim to devise a low-latency non-intrusive

mechanism to monitor and/or manipulate information (e.g., about memory trans-

actions, code execution, etc.) flowing through on-chip buses. Second, we tackle

the challenge of forwarding data obtained through the first mechanism to a remote

node via a dedicated high-bandwidth, low-latency interface. Appropriate packetiza-

tion techniques are explored accordingly with compression given consideration. Said

mechanisms enable novel paradigms for local and remote security threat identifica-

tion and mitigation of edge systems. Furthermore, it could support complex remote

live workload analysis with the objective of (1) achieving better power efficiency and

(2) to drive local resource management and scheduling policies to achieve temporal

determinism, to name a few.

vii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Related Works . 4

2 Design 7

2.1 Network Design Overview . 7

2.1.1 Network Requirements . 7

2.1.2 Consumer Parsing . 8

2.2 Producer Design Overview . 8

2.3 PL Design Overview . 10

2.3.1 Memory-mapped Programmable Logic Block 10

2.3.2 Dedicated hardware . 10

2.3.3 Observer Mechanism . 10

3 Implementation Overview 12

3.1 System Overview . 12

3.2 ZCU102 Overview . 12

3.2.1 Advanced eXtensible Interface 13

3.3 FPGA Overview . 14

4 Implementation Details 16

4.1 Consumer In-depth view . 16

4.1.1 Memory and Buffers . 16

4.1.2 Parsing and visualization . 17

viii

4.2 ZCU Details . 19

4.2.1 General Configuration . 19

4.2.2 Memory Alignment and Caching 19

4.3 FPGA In-depth view . 19

4.3.1 AXI4Full to AXI4Stream translation 19

4.3.2 Frame Former . 21

4.3.3 10g/25g Ethernet Subsystem 21

5 Evaluation 23

5.0.1 Evaluation Infrastructure . 23

5.0.2 FPGA Utilization and Limits 24

5.0.3 Verification of Operation Characteristics 24

5.0.4 Preliminary Evaluation . 25

5.0.5 Pragmatic Benchmarks . 26

5.0.6 Tracing and Visualiization . 28

5.0.7 Limitations . 31

6 Future Works 33

7 Conclusions 34

A Additional Results 36

References 42

Curriculum Vitae 45

ix

List of Tables

5.1 Overall FPGA resource usage in percentage of tested design 24

5.2 FPGA resource usage of EthHelper components in percentage of tested

design . 24

A.1 Runtime comparison between different memory routings for sim fast

image size. 41

A.2 Runtime comparison between different memory routings for sim image

size. 41

x

List of Figures

2·1 Transactions explicitly routed and duplicated within the PL 9

2·2 Transactions are explicitly routed through the Observer within the PL 9

2·3 Transactions are broadcast on the System Bus with a passive Observer 9

2·4 Fundamental Routing Schemas . 9

2·5 General module implementation in PL. For now, Communicator has

Bidirectional communication only with non-PL components 11

3·1 Internal Layout of the ZCU102 and EthHelper components 13

4·1 Buffer usage in linux pre 2.6. 17

4·2 Example of a FPGA trace visualized with data obtained by the consumer 18

5·1 General evaluation infrastructure for evaluation experiments 23

5·2 Analysis of the Orchestrator functionality 25

5·3 Bandwidth.c execution time comparison between different memory routes 26

5·4 Bandwidth throughput comparison between different memory routes. 27

5·5 SD-VBS suite execution time comparison between different memory

routes with sim image size . 29

5·6 SD-VBS suite execution time comparison between different memory

routes with sim fast image size . 30

5·7 disparity with sim image size . 31

A·1 Tracking with sim image size . 37

A·2 Mser with sim image size . 38

xi

A·3 Entire PL Design used for Debugging and Testing 39

A·4 DDR4 Memory speeds and latencies 40

xii

List of Abbreviations

ACE AXI Coherency Extensions
AoE AXI over Ethernet
APU Application processor unit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
CCI Cache Coherent Interconnect
CLB Configurable Logic Block
COTS Commercially-off-the-shelf
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
DTB Device Tree Blob
FF FrameFormer
FFM FrameFormer Manager
FFS FrameFormer Subordinate
FPGA Field Programmable Gate Array
FPD Full Power Domain
GTH Gigabit Transceiver type H
ILA Integrated Logic Analyzer
LC Lucent Connector
LPD Low Power Domain
LUT Look-Up Table
MAIR Memory Attribute Indirection Register
NIC Network Interface Card
PE Processing Element
PL Programmable Logic
SFP+ Small Form-factor Pluggable Plus
SoC System on Chip
VIP Verification Intellectual Property
XES Xilinx Ethernet Subsystem

xiii

Chapter 1

Introduction

The age of information has brought about a significant transformation in the way we

interact with technology. Furthermore, the increase in computational needs has led

to the development of more complex systems across sectors of the industry. Com-

monplace are interconnected heterogeneous systems that combine multiple processing

elements, such as CPUs, GPUs, and FPGAs, to achieve high performance and effi-

ciency. These systems are often used in applications ranging from data centers to

edge computing, where the need for real-time processing and analysis is paramount.

Despite the advancements in hardware and software, the challenge of profiling and

monitoring these systems remains a critical issue. Traditional profiling techniques of-

ten fall short in providing the necessary insights into system performance, especially

in heterogeneous embedded and realtime environments where multiple processing ele-

ments interact and communicate in complex ways. Consequently, the increase in com-

putation and accelerators leads to an induced demand as developers and researchers

seek to increase the workload of these systems, pushing them to their limits. More-

over the complexity of modern systems can exacerbate the challenges of profiling, as

the interactions between different components can lead to unexpected performance

bottlenecks and inefficiencies.

This emphasizes the need for more effective profiling techniques that can pro-

vide real-time insights into system performance, enabling developers to identify and

address performance issues before they become critical. However, there remains a

1

2

limit on the amount of information that can be extracted from a single self contained

systems. Therefore, it would be appropriate to design a system that can extend the ca-

pabilities of traditional profiling techniques. In this study, we will explore extensions

of traditional methods by leveraging the interconnected nature of these embedded

systems and the same efficient machanisms that enable multiple processing elements

to work together.

3

1.1 Motivation

Many hardware and software methods associated with hardware-level profiling involve

a high cost of entry or significant overhead to operate. This high (either financial or

compute) cost also applies to any method requiring higher information granularity.

This work is geared toward addressing the gap between inflexible low-overhead hard-

ware logic analyzers and malleable high-overhead software methods. The goal is

to provide a means of analysis that can be handled remotely to alleviate the bur-

dens on embedded systems in an effort to maintain real-time performance. This is

achievable by utilizing a growing trend in COTS development boards that integrate a

field-programmable gate array (FPGA) that can communicate with SoC components

through high-speed buses. Furthermore, the exponential growth of networking speeds

and latencies is minimizing the disparity between system buses and external commu-

nication. Coupling these two trends might allow us to expand the capabilities of a

single system beyond the board by creating a link between system level mechanisms

and mature networking infrastructure.

The goal is to provide an easily extendable, accessible, and low-cost hardware

profiling solution, EthHelper, that can be used in embedded systems. This paper is

structured to provide abstract design considerations, ZCU102 implementation specific

details, and evaluation of the prototype. We provide realistic performance metrics

using synthetic and pragmatic benchmarks for the system and demonstrate the prac-

ticality of our solution. Further, we want to motivate our application of EthHelper to

works of control flow integrity (CFI) checks, security threat detection, and workload

analysis.

4

1.2 Related Works

Methods of system observability for developers and researchers are constantly under

development and refinement, and have given us a myriad of SW and HW implemen-

tations.

The software space has provided multiple frameworks and solutions to address

the observability of applications at runtime over the decades. (Scales et al., 1996)

is an example of the earliest attempts at providing fine-grain memory access with

low overhead. (Ashraf et al., 2015) provides a general overview of common modern

memory profiling toolkits such as (Luk et al., 2005) (Bruening et al., 2012) (Nethercote

and Seward, 2007). These methods employ Dynamic Binary Instrumentation (DBI)

to translate and instrument on the execution of a binary on the fly. This flexibility

and low manual instrumentation are coupled with the immense effort of platform-

specific porting and high runtime overheads resulting from context switches for each

instrumented instruction. Furthermore, memory profiling with this class of profilers

requires all memory space references to be instrumented.

Other efforts in the software space aim to leverage baked-in hardware debug in-

frastructures to offload statistic tracking or trace capturing. Works such as (Nicolella

et al., 2022) (Bellec et al., 2020) rely on Performance Monitoring Unit (PMU) (Intel

Corporation, 2022) (ARM, 2013), which keep track of hardware events such as retired

instructions, cache and memory accesses, to profile an application at runtime with

marginal overhead. (Chen et al., 2023) relies on a combination of PMU and trace

data by utilizing the ARM Coresight debug infrastructure (ARM Ltd., 2004), which

exposes components such as the Trace Memory Controller (TMC)(ARM Ltd., 2010)

and Embedded Trace Macrocell (ETM)(ARM Ltd., 2012) for user configuration. This

again allows one to achieve acceptable progress of an application despite contention

through an added scope of observable events and statistics. The few limitations pre-

5

sented by this software and hardware combination are the predetermined events that

can be monitored, the number of events that can be monitored concurrently, and the

fetching blackout window needed to use the hardware.

This overall trend of delegating tasks to hardware for monitoring or accelerating

tasks has seen efforts flourish in the programmable logic space. Similar to (Chen et al.,

2023), (Hoppe et al., 2021) uses the Coresight infrastructure to monitor applications;

however, it uses an FPGA to decrease the decoding time of the debug packets, since

the dataflow can be understood and optimized within configurable hardware. In a

similar effort to (Bellec et al., 2020), (Feng et al., 2021) attempt to lower the latencies

of detecting attacks on control flow integrity by using the same Coresight+FPGA

combination to monitor an application CFI exclusively through hardware.

The advancements in monitoring and profiling space have been improving the

efficiency of singular embedded platforms by incorporating more hardware-level in-

frastructure to minimize latencies and overhead. Meanwhile, other spaces in the

research community are seeing the applicability of remote resources (Aguilera et al.,

2017), and there have been recent efforts to adapt programmable logic to lower the

overhead of these understood dataflows. (Mizutani et al., 2021) proposed a fully

connected network of tightly coupled FPGAs to provide significant cost reductions

(e.g. packet processing time) for >100Gbps networks. (Calciu et al., 2019) and (Sidler

et al., 2020) are works that try to increase the efficiency of remote memory access

through programmable logic, but in two distinct manners. (Sidler et al., 2020) is

intended to expand Remote over Converged Ethernet (RoCEv2) semantics and intro-

duce data-shuffling at the Network Interface Card (NIC) level to provide consistent

and performant remote data traversal and retrieval. (Calciu et al., 2019) minimizes

dirty data amplification and page faulting associated with remote memory by allow-

ing an FPGA to track and monitor cache-coherent traffic for statistics that the host

6

operating system can use.

The overlap of a permutation of these efforts have resulted in similar works pro-

poses remote solutions to traditionally local operations. (Abera et al., 2016) and

(Ammar et al., 2024) propose remote checking of Control Flow Attestations in order

to provide a scalable and secure platform. (Basile et al., 2012) explores the space of

remote-code integrity verification through the incorporation of an FPGA to generate

CFA and harden distributed embedded systems. Further uses of FPGA in remote

verification is explored in (Aysu et al., 2016), which proposes a remote integrity ver-

ification of the physcial system in which the FPGA is embedded.

Our work builds on the existing body of knowledge by proposing a novel ap-

proach to profiling and monitoring embedded systems through a combination of pro-

grammable logic and networking.

7

Chapter 2

Design

The following section provides an overview of the constraints and the requirements

to achieve remote monitoring of hardware-level transactions with minimal impact.

This section will provided the abstraction of 3 and provide the design choices and

backhground that influence the implementation of the system.

2.1 Network Design Overview

In this initial work two systems are connected through a high-speed, low latency

link in a producer/consumer architecture and communicate ontop a protocol that

abstracts the physical layer. The producer has the capability of sending frames of

bus-level data (or copies) without kernel involvement, while the consumer receives,

unpacks, and parses the frames to visualize the producer’s memory transaction history

for observability purposes. This system is designed to work in a many-to-one or

many-to-many model, as the consumers would be magnitudes more powerful than

the producers to avoid possible bottlenecks and dropped packets.

2.1.1 Network Requirements

The network infrastructure must adhere to stringent requirements to meet the de-

manding needs of tapping into producer’s on-chip high-speed system bus subsystem.

A minimum bandwidth of 10Gbps is acceptable, for practical purposes 5·3, to sus-

tain the rapid data exchange demanded by such subsystems. Additionally, latency

8

must be kept below 1 µs to ensure swift communication and minimize delays in data

transmission. By meeting these criteria, the network can seamlessly accommodate

the large data amount generated and maintain optimal producer performance.

2.1.2 Consumer Parsing

The consumer possesses the capability to parse incoming packets efficiently, enabling

the extraction of transaction details. Within these packets, the consumer can discern

the nature of transactions, identify the addresses impacted by each transaction, and

determine the originating system component responsible for initiating the transaction.

This parsing ability equips the consumer with comprehensive insights into data flow

and transactional dynamics, facilitating precise analysis

2.2 Producer Design Overview

The producer system needs to provide a few basic components and properties. The

system must have a processing element (PE), programmable logic (PL), external

interface for network communication, main memory, an Observer within the PL, and

a system bus subsystem to tie everything together. All components can communicate

with any other components independently through the interconnect or other dedicated

internal links. This communication must be standardized on all components and

should use address space for directing access to the appropriate components, memory,

or I/O devices. Communication with the bus and components is generally assumed

to be parallel in nature (e.g. reads and writes can occur at the same time given no

conflict). Considering these requirements, we will be focusing on specific applications

of bus and external communication going forward. Therefore, we will implement AXI

over Ethernet(AoE) in the following manners seen in 2·4.

First, transactions on the system bus are explicitly sent to the PL for dupli-

cation 2·1. This provides the shortest critical path for explicit routing given that

9

CPU

BUS

MEM

O
B
S

Figure 2·1:
Transactions
explicitly
routed and
duplicated
within the PL

CPU

BUS

MEM

O
B
S

Figure 2·2:
Transactions
are explic-
itly routed
through the
Observer
within the PL

CPU

BUS

MEM

O
B
S

Figure 2·3:
Transactions
are broadcast
on the Sys-
tem Bus with
a passive
Observer

Figure 2·4: Fundamental Routing Schemas

duplication does not imply blocking caused by the Observer’s mechanisms. However,

this a fundamentally lossy tracking architecture which may unpredictably drop data

at the convenience of not slowing PE.

Second, transactions on the system bus are explicitly routed through the Observer

in the PL 2·2. This allows for lossless tracking of transactions albeit at the cost of

having all of the mechanisms involving the external interface on the critical path.

Lastly, cache-coherent system buses broadcast transactions which the Observer

can passively tie into 2·3. A schema that would allow the Observer mechanisms to

function without explicit routing to the PL address space. Furthermore, it comes at

minimal cost since the transaction is not explicitly crossing the PE/PL boundary.

For ease of implementation, we will be implementing any modules to follow the 2·2

schema. This will provide a lossless tracking mechanism with minimal engineering

overhead.

10

2.3 PL Design Overview

2.3.1 Memory-mapped Programmable Logic Block

We assume that the PL block has multiple address spaces that can be used to account

for possible different power/time domains on a system. These physical address spaces

can be allocated to the same or separate physical ports on the Bus. This allows for

the PL to contain multiple mechanisms to generate traffic on separate ports to the

Bus.

2.3.2 Dedicated hardware

The basic building blocks of FPGAs are Look Up Tables (LUTs) which can be com-

posed into fundamental transistor logic (e.g. AND, OR, etc). Throughout the de-

velopment of the FPGA dedicated hardware blocks have been embedded into the

FPGA to accelerate computation or introduce new functionality. For this paper, we

will focus on the use of three dedicated hardware blocks found in modern FPGAs.

Digital Signal Processors (DSPs) are computational accelerators for multiplication

and division. Block RAM was invented to bring memory inside the FPGAs. Finally,

GTH/GTY transceivers were introduced to handle external communication.

2.3.3 Observer Mechanism

The Observer has to fulfill several tasks: (1) communicate with the system bus,

(2) form packets of transaction data, (3) instantiate a controller to use the external

interface, and (4) send the data through the physical port. We show a generic module

and layout to achieve the route through schema 2·2 with 2·5.

Serializer/Communicator is the initial point of the Observer mechanisms which

allows communication to and from the System Bus. Furthermore, This module is

responsible for serializing data and metadata of R/W requests and distributing the

11

Serializer/
Communicator

BUS

MEM

Packet
Former

Medium
Controller

Physical

Figure 2·5: General module implementation in PL. For now, Commu-
nicator has Bidirectional communication only with non-PL components

data stream among available external interfaces.

The Packet Former Module (PFM) is responsible for assembling serialized data

and interfacing with the external interface controller. The PFM fulfills its responsi-

bility by accumulating and packaging bus data to comply with the external interface

protocols. In addition, this module abstracts control signals between the Serializ-

er/Communicator and the Medium Controller to allow for the accumulation of data

without blocking the PE and correct communication.

A Medium Controller needs to be instantiated to ingest packets from the Packet

Former and manage external interface transceivers to transmit data. Moreover, this

module offers debug signals to verify protocol compliance and transceiver operation.

The medium and protocol will dictate what component in the PL will contribute to

the overall additional latency of using AoE. In respect to the minimum requirements,

the latency and throughput of the system will be limited by the medium as DDR4

(the defacto memory in use) has a sustained raw throughput of 12.8 GB/s with 15ns

CAS latency A·4.

Chapter 3

Implementation Overview

3.1 System Overview

Our test environment contains two systems that serve the purpose of producer and

consumer. Our consumer will be a Dell Precision 7950 equipped with Dual Intel

Xeon Gold 6130 and a Mellanox ConnectX-2 Dual SFP+ NIC running Ubuntu 22.04.

The producer is a Xilinx Ultrascale+ ZCU102 with ZU9EG SOC running a generic

Petalinux with SFP+ transceivers enabled. The FPGA bitstream was compiled with

Vivado v2019.2. These two systems communicate through a single point-to-point

connection via 10GBase-SR SFP+ LC Transceiver and OM3 fiber cable. We used

tcpdump, a cli tool, to save the exported ethernet packets

3.2 ZCU102 Overview

The ZCU102 is an embedded development platform commercially-of-the-shelf (COTS)

developed by AMD (previously Xilinx) equipped with ZU9EG SOC. This SOC is a

heterogeneous architecture with an application processor unit (APU) composed of

quad ARM Cortex-A53, dual Cortex-R5, and an UltraScale+ FPGA. These three

main components interact through three communication modules: the Cache Coher-

ent Interconnect (CCI), the Full Power Domain (FPD) main switch, and the Low

Power Domain (LPD) main switch 3·1. The scope of this paper will encompass the

APU, FPGA with dedicated SFP+ transceivers, and FPD main switch. All memory

12

13

Figure 3·1: Internal Layout of the ZCU102 and EthHelper compo-
nents

allocated for applications will be routed through the FPGA aperture and ultimately

be in system memory. This initial concept is possible through reserving memory

in the Device Tree Blob (DTB), RT-Bench, and the Advanced eXtensible Interface

(AXI) protocol.

3.2.1 Advanced eXtensible Interface

Heterogeneous systems necessitate a common form of communication to facilitate

computation and transactions between components of differing underlying mecha-

nisms. Our choice of platform is constructed around the AXI protocol for most

inter-chip communication. AXI Coherency Extensions (ACE) are used exclusively

for high-speed components connected directly to the CCI. However, ACE is a bidirec-

tional protocol for maintaing coherence with APU caches. ACE is also limited as only

read type transactions can be seen excluding any write backs without explicit routing.

This will be out of scope for the paper but is not a limitation of the current work or

platform. AXI (and ACE by extension) is a memory-mapped communication protocol

that relies on (1) manager and subordinate scheme and (2) a handshake mechanism

to execute memory transactions. AXI comes in three variations FULL, LITE, and

STREAM. This paper will touch directly on AXI4Full and AXI4Stream as these

are the necessary components for Transparent Snooping. AXI4Full is a bidirectional

14

protocol that employs 5 channels (2 for reading memory and 3 for writing) that op-

erate independently and in parallel. In contrast, AXI4Stream is a single-channel

unidirectional protocol intended for data streams.

3.3 FPGA Overview

The FPGA has 4 major tasks: redirecting memory transactions from APU to DDR

memory, serializing of AXI4Full to AXI4Stream , forming an ethernet frame, and

correctly using the ethernet module to send packets. We created the Orchestrator

module and the FrameFormer module to utilize the Xilinx-provided 10g/25g ethernet

subsystem (XES) module. We shall refer to all modules collectively as the EthHelper.

The Orchestrator imposes a simple fair scheduler to schedule up to 5 submodules to

serialize the AXI4Full channels (e.g. AR, AW, R,W, B) to a single AXI4Stream chan-

nel. Furthermore, the Orchestrator was architected to be modular, allowing the cre-

ation of submodules that address other protocols that implement handshaking. For

a proof of concept, we constructed the AR and AW submodules to give us metadata

consisting of transaction type, AXI ID, Burst Length, and a clock-based timestamp.

The other channels are connected to passthrough dummy modules that allow uninter-

rupted execution, yet the scheduler is implemented for all 5 submodules to work. The

current iteration of the Orchestrator requires a source and target that communicates

through AXI4Full to generate understandable AXI4Stream outputs.

The FrameFormer (FF) is a custom FIFO module that allows configurable ether-

net packet arguments (except for 802.1Q tag and CRC) to frame and send incoming

AXI4Stream data. The FF is internally split into two parts: the FrameFormerSub-

ordinate (FFS) and the FrameFormerManager (FFM). The FFS provides a shifting

register to buffer and send all incoming data for the FFM. the FFM provides the

control outputs for the XES and will create and size the ethernet frame with FFS

15

data and inputs given. The mechanism is as follows: FFS will wait for a single

AXI4Stream burst to write into the shifting register, upon receiving the FFS will

initiate the FFM to output all parts except payload to the XES, after the FFM will

receive all data within the FFS shifting register until packet size is reached, once the

packet size is reached it will either idle or redo the cycle depending if there is still

more data.

Chapter 4

Implementation Details

4.1 Consumer In-depth view

4.1.1 Memory and Buffers

Network data transmission relies heavily on buffering mechanisms to reconcile the

asynchronous nature of network interfaces and host system processing capabilities.

Two primary buffer types are employed: hardware-managed buffers within the Net-

work Interface Card (NIC) and kernel-space buffers. These buffers serve a critical role

in mitigating the performance disparity between network link speeds and the process-

ing rate of the host system, preventing data loss and optimizing overall RX/TX effi-

ciency. The hardware NIC buffer, typically one for transmit (TX) and one for receive

(RX) operations, provides a temporary storage area for data awaiting processing. In-

creasing the size of the NIC RX buffer can significantly reduce the interrupt load on

the host CPU, as fewer interrupts are required to signal per given packet amount.

Furthermore, larger RX buffers enable the transmission and reception of jumbo frames

(packets exceeding the standard IEEE 802.3 Ethernet frame size of 1500 bytes), which

can reduce protocol overhead by consolidating multiple smaller packets into a single,

larger frame. While increasing buffer sizes can improve throughput, it is important to

acknowledge the potential impact on network latency, a factor not directly addressed

within the scope of this research.

The kernel buffer acts as an intermediary, facilitating the transfer of data from

the NIC hardware buffer to the user application memory. Insufficient kernel buffer

16

17

Figure 4·1: Buffer usage in linux pre 2.6.

capacity can lead to two primary issues: NIC buffer overflow (occurs in Linux 2.6+

with New API (NAPI) implementation), where the NIC hardware buffer overwrites

incoming data, or excessive kernel buffer thrashing, manifested as frequent calls to

netif rx() for pre-NAPI implementations 4·1, which both are indicative of a bottle-

neck. The kernel buffer’s size must be carefully considered in relation to the NIC’s

RX buffer size to ensure efficient data flow and prevent these detrimental effects.

A significant performance consideration is the often default configuration of NIC

buffer sizes. Many network interfaces are configured with RX buffer sizes ranging

from 256 to 1024 bytes, significantly smaller than the NIC’s maximum buffer size of

4096-8192 bytes found on modern Ethernet NICs. Consequently, the kernel buffer

must be proportionally sized to accommodate the increased data volume handled by

the larger NIC RX buffer, ensuring a balanced and efficient data transfer pipeline.

4.1.2 Parsing and visualization

The data acquisition and analysis pipeline constructed for this research utilizes a

combination of command-line tools and custom software programs. Packet capture

is performed using tcpdump, a well-known command line packet analyzer, during

the runtime of the producer system application under observation. The subsequent

processing and visualization of the data are executed offline. Furthermore, the process

18

Figure 4·2: Example of a FPGA trace visualized with data obtained
by the consumer

is not limited to this operation scheme.

The proccessing of packets of the pipeline is handle by two C++ parsers: pack-

etStripper.cpp and packet processor.cpp.The process starts with the preproccessing

of raw packets captured by tcpdump with packetStripper.cpp. This step extracts

the raw hexadecimal data of the captured packet trace. Then packet processor.cpp

identifies user-defined start and end delimiters within the FPGA data stream. This

design choice of start and end delimiters allow identifying a complete and fully formed

packet. After, packet proccessor.cpp performs several transformations: removal of

inter-transaction padding, byte order inversion, and reformatting of the data into a

human-readable structure. This structured data includes address information, meta-

data, and a decomposition of the metadata into fields such as AXI ID, AXI burst

length, transaction type, and a clock cycle timestamp. To facilitate debugging and

modularity, each processing stage is output to a separate file.

The final stage of the pipeline is implemented in Mapper.py, a Python script

responsible for constructing the visualization of the processed data. This script uses

the parsed and formatted data and generates two scatterplots. These scatterplots

depict the distribution over time of transaction types across a defined address range,

with the granularity of the address at byte-level and page-level.

19

4.2 ZCU Details

4.2.1 General Configuration

The ZCU102 has been configured to run Petalinux 2023.2 without modifications to the

kernel or user applications. There is a modified device tree blob (DTB) that includes

a modified Si570 frequency of 156.25MHz (per XES/IEEE specification) and multiple

instantiations within the amba pl block for configuring the necessary clocks of the

EthHelper. Additionally, there is a reserved memory region of 256MB in DRAM for

testing purposes to avoid data collisions.

4.2.2 Memory Alignment and Caching

The Orchestrator is capable of handling unaligned accesses without issue due to it

being more of a passthrough/monitor module on the critical route. Simply, all trans-

actions, given that components upstream and downstream of the Orchestrator work

correctly together. However, the Cortex-A53, by default, is not configured to allow

unaligned accesses in device memory or non-cacheable memory. Yet, this feature

of unaligned access has been supported since ARMv6 (ARM Ltd., 2018). This is

corrected in two possible ways: modifications to the Memory Attribute Indirection

Register (MAIR), or making the memory region cacheable. We chose for the latter as

a colleague had a module from (Izhbirdeev et al., 2024) that could be modified with

ease with memremap() to allocate a 3MB range at the specific memory apertures of

the FPGA module.

4.3 FPGA In-depth view

4.3.1 AXI4Full to AXI4Stream translation

The Xilinx Ethernet Submodule (XES) used for this preliminary study has the dat-

apath for RX/TX built as an AXI4Stream interface. Along with the limitation of

20

4 physical ports for the XES to utilize, there requires a serializer to convert the 5

channels of AXI4Full into a single AXI4Stream channel. This responsibility formed

into the Orchestrator module.

The module itself is quite simple and is composed of a simple round-robin sched-

uler and a finite state machine internally with output signals to actuate sub-modules,

which the end user could create, that handled the interface responsibilities. Each

submodule is responsible for a single channel on an interface. The submodules send

up information of valid and ready signals, in progress status, transaction length, along

with metadata and data to the Orchrestrator. The Orchestrator’s passes down resets,

clock, and AXI4Stream ready signals to the submodules. The Orchestrator uses a

set of encoding masks that allow the proper control for all modules at in a single clock

cycle, so that the proper submodule can unblock a pending transaction. The encod-

ing mask design choice was made to retain the lowest channel transaction latency

possible. The Orchestrator was also made with the intent of an easily modifiable

(offline or online) and understandable wrapper and framework for any serialization

to AXI4Stream .

Given a simple assumption that the downstream AXI4Stream is always ready.

We can formulate a simple equation for the longest wait time that one module needs

to wait to unblock. Given N enabled submodules and a function Burst Length()

which gives the transaction length for the n i we can make 4.1:

N∑
n=1

2 ∗Burst length(ni) + 2 ∗N (4.1)

Where the longest latency will be for the last submodule as it will have to wait

the orchestrator to send all metadata and data from each burst of each submodule,

with the added overhead of enabling and receiving data from each submodule.

21

4.3.2 Frame Former

This module allows the decoupling of signals and configuring data link layer pa-

rameters. The FrameFormer comprises a FrameFormerSubordinate (FFS) and the

FrameFormerManager (FFM).

The FFS submodule provides a shifting register array (that is user-defined in

length) to buffer incoming data from the Orchestrator in order to minimize the amount

of blocking the downstream sending mechanisms present. The blocking may come

from frame-forming actions (e.g., sending start of frame and sending the end of frame)

to physical module or protocol actions (inter-frame gap wait, resets on error, etc).

The initial motivation for using a shift register was to have the latest data on a wire

and minimize the logic to refresh the data. In comparison, a traditional approach

would have an additional register to store the output, whereas we intended the first

register of the shifting register array to uphold this responsibility. This choice allowed

all logic to revolve around the single object of the shifting register. It may have only

had a slight clock difference.

FFM is a simpler module that executes the actual framing of a packet and sends

the correct signal to the XES for proper transmission. Furthermore, this module

allows the users (and in the future programs) to select the parameters of the ethernet

frame (e.g. source/destination address, ethernet type, and frame length) to other

parameters such as sync words (i.e. to show start and end of FPGA stream) via

configuration ports.

4.3.3 10g/25g Ethernet Subsystem

To facilitate testing the Xilinx 10g/25g Ethernet module was employed for availability

and documentation purposes. It does require an additional license for xxv-ethernet-

3.1 which comes free of cost yet is only available for 180 days. The module has an

22

AXI4Full interface for configuration of the many options. However, the default mod-

ule configuration is ready to transmit (given the correct signaling) data. Furthermore,

there are two AXI4Stream interfaces for rx/tx.

Chapter 5

Evaluation

5.0.1 Evaluation Infrastructure

The behavioral analysis methodology incorporated simulations during preliminary

stages, followed by implementation of a System Integrated Logic Analyzer (ILA) in

conjunction with supplementary debug pins and counters. The software infrastruc-

ture provided by (Nicolella et al., 2022) enabled monitoring of benchmark metrics for

(Venkata et al., 2009) and programs (Isolbench) in (Valsan et al., 2016), while simulta-

neously providing the requisite mechanisms for heap reallocation to specified memory

regions. Furthermore, as stated in Section 4.2, a kernel module was implemented to

facilitate unaligned access and caching to the FPGA memory region. Three physical

address apertures were established, directing to physical DRAM, DRAM loopback,

and EthHelper, as illustrated in Figure 5·1 with a mechanism similar to (Roozkhosh

and Mancuso, 2020) using a modified UARTDriver module from (Ciraolo et al., 2025)

Figure 5·1: General evaluation infrastructure for evaluation experi-
ments

23

24

Resource Utilization Available Utilization %
LUT 43878 274080 16.01
LUTRAM 11477 144000 7.97
FF 67303 548160 12.28
BRAM 69 912 7.57
IO 1 328 0.30
GT 1 24 4.17
BUFG 9 404 2.23

Table 5.1: Overall FPGA resource usage in percentage of tested design

Components LUT % BRAM % CLB %
Orchestrator 0.04 0.03 0.11
FrameFormer 1.62 0.78 2.63
AXI Width Converter 0.03 0.05 0.17
XES 3.11 3.88 10.30

Table 5.2: FPGA resource usage of EthHelper components in per-
centage of tested design

that we will refer to as the Address Modifier.

5.0.2 FPGA Utilization and Limits

The design was synthesized with Vivado 2019.2 with a clock frequency of 156.25MHz

for the dataflow path and 75MHz for the control path. The overall utilization 5.1 for

the tested design is quite light despite the additional debug infrastructure. Further-

more, the core components to enable AoE use significantly less resources 5.2.

5.0.3 Verification of Operation Characteristics

Testbenches were developed within the Vivado environment to evaluate custom mod-

ules. AXI Verification IP (VIP) modules were employed to generate and validate

AXI4Full and AXI4Stream transactions. The primary objectives of simulation

testing were to observe and optimize Orchestrator state transitions and transaction

handling latency. Figure 5·2 demonstrates the correctness of the Orchestrator given

single and multiple concurrent channel transactions. Additionally, the simple bound-

ing equation proposed in Section 3 demonstrates consistency with System ILA capture

25

Figure 5·2: Analysis of the Orchestrator functionality

data and simulation.

5.0.4 Preliminary Evaluation

Baseline application and medium throughput metrics were established utilizing Isol-

bench’s bandwidth program. The experimental protocol employed a one-shot config-

uration on a FIFO scheduler with priority 99 and memory allocation of 12MB, while

constraining execution to CPU #1. The experiment was conducted across three non-

cached memory regions: direct DRAM access, DRAM loopback in the FPGA, and

the EthHelper. This methodological approach facilitated calculation of the sustained

throughput of the XES through analysis of counter outputs and benchmark metrics.

Empirical data revealed transmission of 290,063 packets, each comprising 1035 bytes,

with program execution completing in 0.21111 seconds. Subsequent computational

analysis yielded a medium throughput of 10.5953 Gb/s, with application throughput

recorded at 277.5679 MB/s.

The results depicted in Figure 5·3 demonstrate that the predominant performance

penalty is attributable to traversing the Processing Element/Programmable Logic

(PE/PL) boundary, as evidenced by comparable throughput measurements between

EthHelper and DRAM loopback configurations. The observed throughput differential

26

Figure 5·3: Bandwidth.c execution time comparison between different
memory routes

can be attributed to disparities in clock frequencies, power domains, and extended

critical path length. Moreover, runtime analysis revealed minimal utilization of the

FrameFormer buffer, rarely exceeding three buffer allocations, indicating that the

performance bottleneck resides primarily within the Orchestrator component.

5.0.5 Pragmatic Benchmarks

The study utilizes (Venkata et al., 2009) as the foundation for pragmatic benchmarks,

selected for its provision of realistic, real-time workloads. A kernel module was im-

plemented to perform memremap operations on FPGA memory regions using the

CACHE WB flag. It is imperative to acknowledge the constraints of the module and

the associated limitations on memory allocation for pragmatic benchmarks; specif-

ically, mapping capabilities were restricted to a maximum of 3 megabytes, despite

27

Figure 5·4: Bandwidth throughput comparison between different
memory routes.

28

a 256 megabyte range reserved and mapped in the Device Tree Blob DTB. Conse-

quently, experimental evaluations were constrained to small image sizes categorized as

”sim” and ”sim fast.” This limitation particularly affects programs characterized by

memory-bound operations due to intensive memory transactions, restricting observ-

ability of larger image dimensions. The benchmark selection incorporates a balanced

distribution between memory-intensive and compute-intensive programs to compre-

hensively demonstrate the performance impact of the EthHelper during representative

workloads.

The module’s performance aligns with expectations 5·5 5·6. Memory-intensive

applications such as mser, disparity, and tracking exhibit characteristic behavior of

memory-bound computations, wherein memory transactions incur substantial penal-

ties associated with power domain transitions. While statistical significance of stan-

dard deviation between EthHelper and loopback configurations is not explicitly demon-

strated in this experiment, differences are attributable to the Orchestrator’s opera-

tional requirement to block alternative channels during individual channel transac-

tions.

5.0.6 Tracing and Visualiization

The tracing and visualization infrastructure leverages tcpdump, a conventional command-

line interface program utilizing libpcap, in conjunction with custom Python scripts.

Hardware and software limitations within the evaluation infrastructure result in oc-

casional data discontinuities and interpretative inaccuracies in the Python scripts re-

sponsible for parsing and visualizing data captured from tcpdump packets. It should

be emphasized, however, that these limitations do not compromise the core FPGA

infrastructure, which maintains data integrity without information loss. Furthermore,

the implemented kernel module constrains memory accesses to cache line dimensions

(to which the orchestrator is capable of byte alignment and recording). To mitigate

29

Figure 5·5: SD-VBS suite execution time comparison between differ-
ent memory routes with sim image size

30

Figure 5·6: SD-VBS suite execution time comparison between differ-
ent memory routes with sim fast image size

31

(a) without interference (b) with interference

Figure 5·7: disparity with sim image size

Network Interface Controller buffer overruns, memory bomds of extended execution

duration are conducted concurrently on all cores except the primary core executing

the application under observation. This methodology deliberately induces memory

contention to reduce the operational frequency of the memory subsystem, thereby de-

creasing the frequency of responses to requests from the program under observation.

Yet, We did gather a result for the ground truth of the memory access with a small

memory size for bandwidth.c 4·2.

This methodological approach is exemplified through analysis of the ”disparity”

program under observation. Execution with and without interference demonstrates

markedly different data capture characteristics; specifically, interference within the

memory subsystem reduces packet loss due to diminished NIC buffer overruns result-

ing from decreased memory transaction response frequency. Comparable effects are

observable in alternative applications such as mser A·2 and tracking A·1.

5.0.7 Limitations

While the framework of the Orchestrator is complete, implementation of submodules

for the R, W, and B channels remains necessary for comprehensive AXI4Full trac-

ing. The FrameFormer architecture was designed to transmit information immedi-

32

ately, even when padding was required to fulfill minimum packet length requirements.

This design decision results in potential fragmentation of metadata and addressing

information across multiple packets, thereby precluding multi-threaded processing

as packets lack information completeness (i.e., they are not self-contained). Conse-

quently, packet loss provokes cascading effects within parser logic. Furthermore, the

absence of transmission flow control in the FrameFormer potentially triggers Net-

work Interface Controller (NIC) buffer overrun issues with our consumer. As a result,

the simple parser demonstrates deficiencies in identifying or appropriately recovering

fragmented data portions, leading to results that inadequately reflect the system’s

ground truth.

Chapter 6

Future Works

There are several improvements to be made on the AoE implementation. The imme-

diate efforts lie in implementing submodules to handle the remaining AXI channels.

Similar efforts wil also create sumbmodules to handle the ACE protocol extension

of AXI. We are also interested in the space of extending hardware mechanisms with

remote capabilities. Primarily, efforts to extend ACE with remote capabilities to

lower the implementation difficulties and overhead related to distributed memory.

In addition, we would like to extend the Coresight debug infrastructure in the same

manner to potentially adapt methods such as (Chen et al., 2023) and verify feasibility

of orchestrating hardware on remote systems.

33

34

Chapter 7

Conclusions

This thesis study the feasibility of distributing traditionally on-board profiling tech-

niques by repurposing high-speed external interfaces custom profiling hardware. By

utilizing the highly coupled and I/O rich FPGA on the Xilinx Zynq Ultrascale+ plat-

form, a proof of concept networking mechanism for unifying the system bus to the

outside world was accomplished and studied.

The proposed solution leverages the SFP+ interface to transmit profiling data

from the FPGA to a host computer, enabling real-time monitoring and analysis of

system performance. This approach not only enhances the observability of the system

but also provides a non-invasive method for profiling, allowing developers to gain

insights into system behavior without significantly impacting performance.

The initial applications of this work will be to provide a more powerful and flexible

Logic analyzer to complement or replace the traditional In-Circuit Logic Analyzer

(ILA) in the Xilinx toolchain. The proposed solution is non-invasive, easy to use, and

extendable, allowing for enhanced observability of the system. This mechanism can

be adapted to complement other techniques in both hardware and software domains,

providing a robust framework for system monitoring and debugging. Furthermore,

it offers an opportunity for simpler embedded solutions to feed data into a central,

powerful computer, enabling comprehensive Control Flow Integrity (CFI) checking

and other advanced methods.

Despite experiencing a performance hit, it is important to note that this is not

35

due to our module but rather the inherent penalty of the Processing Element (PE)

and Programmable Logic (PL) boundary. Nevertheless, we maintain performance on

par with a simple translator, demonstrating the efficiency of our approach. The ZCU

platform utilized only one SFP port out of a total of four available, indicating that

further exploration of these limitations could yield insights into compatibility with

larger swarms of computers performing similar tasks.

Future work will not only focus on sending data but also on receiving data in

the same manner, potentially enabling remote memory access. Additionally, direct

interfacing with the CoreSight debug infrastructure could provide enhanced tools for

system analysis and debugging, further expanding the capabilities of this profiling

mechanism.

This work proposes working towards AXI over Ethernet (AoE) as a standard for

profiling and debugging in heterogeneous systems, leveraging the existing infrastruc-

ture and protocols to create a unified approach to system monitoring. Through the

use of the EthHelper framework we aim to establish a robust and adaptable profiling

solution that can be integrated into various systems, with the initial application for

profiling but with the powerful potential for broader applications of remote execution,

remote memory, and remote integrity checking.

36

Appendix A

Additional Results

37

(a) without interference

(b) with interference

Figure A·1: Tracking with sim image size

38

(a) without interference

(b) with interference

Figure A·2: Mser with sim image size

39

Figure A·3: Entire PL Design used for Debugging and Testing

40

Figure A·4: DDR4 Memory speeds and latencies

41

Program normal dram (s) no ETH (s) ETH (s)

disparity 8.62e-04 ± 2.30e-05 8.61e-04 ± 3.60e-05 8.64e-04 ± 4.40e-05

mser 1.46e-03 ± 2.20e-05 1.45e-03 ± 3.00e-05 1.47e-03 ± 3.70e-05

sift 2.66e-03 ± 2.30e-05 2.64e-03 ± 2.20e-05 2.65e-03 ± 3.00e-05

stitch 3.55e-04 ± 1.60e-05 3.47e-04 ± 1.80e-05 3.47e-04 ± 1.80e-05

texture synthesis 9.91e-04 ± 3.10e-05 9.90e-04 ± 3.20e-05 1.00e-03 ± 3.20e-05

tracking 2.00e-03 ± 2.00e-05 1.97e-03 ± 2.10e-05 1.97e-03 ± 2.40e-05

Table A.1: Runtime comparison between different memory routings
for sim fast image size.

Program normal dram (s) no ETH (s) ETH (s)

disparity 1.94e-03 ± 2.50e-05 1.95e-03 ± 3.70e-05 1.95e-03 ± 4.30e-05

mser 4.89e-03 ± 4.20e-05 4.90e-03 ± 1.28e-04 4.91e-03 ± 1.52e-04

sift 1.37e-02 ± 4.90e-05 1.36e-02 ± 7.40e-05 1.37e-02 ± 7.10e-04

stitch 5.96e-04 ± 1.80e-05 5.86e-04 ± 1.80e-05 5.85e-04 ± 1.80e-05

texture synthesis 6.67e-03 ± 4.37e-04 6.61e-03 ± 1.02e-04 6.62e-03 ± 1.04e-04

tracking 5.27e-03 ± 2.90e-05 5.19e-03 ± 3.30e-05 5.18e-03 ± 2.80e-05

Table A.2: Runtime comparison between different memory routings
for sim image size.

References

Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T., Paverd, A., Sadeghi, A.-
R., and Tsudik, G. (2016). C-flat: Control-flow attestation for embedded systems
software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, page 743–754, New York, NY, USA. Associa-
tion for Computing Machinery.

Aguilera, M. K., Amit, N., Calciu, I., Deguillard, X., Gandhi, J., Subrahmanyam,
P., Suresh, L., Tati, K., Venkatasubramanian, R., and Wei, M. (2017). Remote
memory in the age of fast networks. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 121–127, New York, NY, USA. Association for
Computing Machinery.

Ammar, M., Abdelraoof, A., and Vlasceanu, S. (2024). On bridging the gap between
control flow integrity and attestation schemes. In Proceedings of the 33rd USENIX
Conference on Security Symposium, SEC ’24, USA. USENIX Association.

ARM (2013). Arm architecture reference manual for a-profile architecture.

ARM Ltd. (2004). Coresight components technical reference manual.

ARM Ltd. (2010). CoreSight trace memory controller technical reference manual.

ARM Ltd. (2012). Embedded trace macrocell architecture specification etmv4.0 to
etm4.6.

ARM Ltd. (2018). Armv6-m architecture reference manual.

Ashraf, I., Taouil, M., and Bertels, K. (2015). Memory profiling for intra-application
data-communication quantification: A survey. In 2015 10th International Design
Test Symposium (IDT), pages 32–37.

Aysu, A., Gaddam, S., Mandadi, H., Pinto, C., Wegryn, L., and Schaumont, P.
(2016). A design method for remote integrity checking of complex pcbs. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1517–1522.

Basile, C., Di Carlo, S., and Scionti, A. (2012). Fpga-based remote-code integrity
verification of programs in distributed embedded systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2):187–200.

42

43

Bellec, N., Rokicki, S., and Puaut, I. (2020). Attack Detection Through Monitoring
of Timing Deviations in Embedded Real-Time Systems. In Völp, M., editor, 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 8:1–8:22, Dagstuhl,
Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Bruening, D., Zhao, Q., and Amarasinghe, S. (2012). Transparent dynamic instru-
mentation. SIGPLAN Not., 47(7):133–144.

Calciu, I., Puddu, I., Kolli, A., Nowatzyk, A., Gandhi, J., Mutlu, O., and Subrah-
manyam, P. (2019). Project pberry: Fpga acceleration for remote memory. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19, page
127–135, New York, NY, USA. Association for Computing Machinery.

Chen, W., Izhbirdeev, I., Hoornaert, D., Roozkhosh, S., Carpanedo, P., Sharma, S.,
and Mancuso, R. (2023). Low-Overhead Online Assessment of Timely Progress as
a System Commodity. In Papadopoulos, A. V., editor, 35th Euromicro Conference
on Real-Time Systems (ECRTS 2023), volume 262 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 13:1–13:26, Dagstuhl, Germany. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

Ciraolo, F., Nicolella, M., Hoornaert, D., Caccamo, M., and Mancuso, R. (2025).
Light virtualization: a proof-of-concept for hardware-based virtualization.

Feng, L., Huang, J., Hu, J., and Reddy, A. (2021). Fastcfi: Real-time control-flow
integrity using fpga without code instrumentation. ACM Trans. Des. Autom.
Electron. Syst., 26(5).

Hoppe, A., Becker, J., and Kastensmidt, F. L. (2021). High-speed hardware acceler-
ator for trace decoding in real-time program monitoring. In 2021 IEEE 12th Latin
America Symposium on Circuits and System (LASCAS), pages 1–4.

Intel Corporation (2022). Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3 (3A, 3B, 3C & 3D): System Programming Guide.

Izhbirdeev, I., Hoornaert, D., Chen, W., Zuepke, A., Hammad, Y., Caccamo, M.,
and Mancuso, R. (2024). Coherence-aided memory bandwidth regulation. In
2024 IEEE Real-Time Systems Symposium (RTSS), pages 322–335.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. (2005). Pin: building customized program anal-
ysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’05, page 190–200, New York, NY, USA. Association for Computing Machinery.

44

Mizutani, K., Yamaguchi, H., Urino, Y., and Koibuchi, M. (2021). Optweb: A
lightweight fully connected inter-fpga network for efficient collectives. IEEE Trans-
actions on Computers, 70(6):849–862.

Nethercote, N. and Seward, J. (2007). Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, page
89–100, New York, NY, USA. Association for Computing Machinery.

Nicolella, M., Roozkhosh, S., Hoornaert, D., Bastoni, A., and Mancuso, R. (2022).
Rt-bench: An extensible benchmark framework for the analysis and management
of real-time applications. In Proceedings of the 30th International Conference on
Real-Time Networks and Systems, RTNS 2022, page 184–195, New York, NY, USA.
Association for Computing Machinery.

Roozkhosh, S. and Mancuso, R. (2020). The potential of programmable logic in the
middle: Cache bleaching. In 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 296–309.

Scales, D. J., Gharachorloo, K., and Thekkath, C. A. (1996). Shasta: A low overhead,
software-only approach for supporting fine-grain shared memory. SIGPLAN Not.,
31(9):174–185.

Sidler, D., Wang, Z., Chiosa, M., Kulkarni, A., and Alonso, G. (2020). Strom: Smart
remote memory. In Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA. Association for Computing Machinery.

Valsan, P. K., Yun, H., and Farshchi, F. (2016). Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–12.

Venkata, S. K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie, S., and
Taylor, M. B. (2009). Sd-vbs: The san diego vision benchmark suite. In 2009
IEEE International Symposium on Workload Characterization (IISWC), pages 55–
64.

Patrick Carpanedo
Masters Student

patrickcarpanedo@gmail.com | patrick.carpcompanion.com
LinkedIn | github.com/pfcarp

Boston, MA
Education
2021 - Present Master's Computer ScienceBoston University MA, USA

2016 - 2020 Bachelors of Arts in PhysicsCollege of the Holy Cross MA, USA

2012 - 2016 High School DiplomaBoston College High School MA, USA

Research Interest
Investigating, assembling, designing, and testing high-performance safety-critical
cyber-physical systems (CPS), with special focus on integrating FPGAs for
sensor-fusion and resource management. Also, interested in investigating practical
applications of network communication and programmable logic within the
automotive world to discover new ways to promote safety, efficiency, and
verifiability. Currently, focused on novel uses with hybrid CPU+FPGA platforms
to potentially provide a transparent memory profiler for offboard analysis.

Publications & Presentations
International Conference & Workshop Papers

• Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick
Carpanedo, Sanskriti Sharma, and Renato Mancuso. Low-Overhead Online
Assessment of Timely Progress as a System Commodity. In 35th Euromicro
Conference on Real-Time Systems (ECRTS 2023). Leibniz International
Proceedings in Informatics (LIPIcs), Volume 262, pp. 13:1-13:26, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/
LIPIcs.ECRTS.2023.13 ECRTS

Presentation

• Shahin Roozkhosh, Bassel El Mabsout, Cristiano Rodrigues, Patrick
Carpanedo, Denis Hoornaert, Su Min Tan, Benjamin Lubin, Marco Caccamo,
Sandro Pinto, and Renato Mancuso. Burning Fetch Execution: A Framework

45

for Zero-Trust Multi-Party Confidential Computing. In 2024 Technology
Innovation Institute (TII) GENZERO Workshop.

Proposal Writing

> Effiecient control for energy constrained quadrapeds proposal

PIs: Prof. Sabrina Neuman, Prof. Renato Mancuso
NSF-medium proposal aiming to enable a new class of low cost, power-
efficient robots through improving neural network control for under-
instrumented limbed robots, exploration hardware/software co-designing
techniques for energy-efficient control, and designing efficient learned runtime
adaptation techniques on constrained platforms

> (TII) Genzero Proposal

PIs: Benjamin Lubin, Marco Caccamo, Sandro Pinto, Renato Mancuso
Joint effort between PhD candidates from Boston University, University of
Minho, and Technical University of Munich to develop zero trust framework
for multi-party confidential computing. Contributed to proposal development
and creation of a successful prototype demonstration.The proposal was
accepted and the team was awarded the Best Presentation Award.

Research Positions
Spring 2022 -
ongoing

Masters Student
Researcher

Cyber Physical
Systems Lab

Boston, MA, USA

• Researching and implementing methods for allowing AXI over Ethernet
• Integration of hardware infrastructure to evaluate and measure phases in an

executing program
• Assembling and maintaining servers (e.g. MegaMind and Proxmox Cluster)

for CPS Lab use to facilitate research and collaboration and ease the access
to development boards and related software

• Participating in pseudo-Technical Program Committee (TPC) meetings with
Lead P.I. to review papers.

• Volunteering to assist or lead students enrolled in directed studies inside of
CPS lab.

46

Summer 2019 Research
Assistant

College of the Holy
Cross

Worcester, MA, USA

• Gathered and assembled subsystems of the Beam Profile Monitor (BPM)
system

• Verified electrical tolerances and timings each components of the BPM
systems

• Debugged the BPM system through a gamut experiments which were logged
and relayed to the Lead P.I.

• Arranged presentations and discussions weekly on the experiment findings
with a different research group

Notable Research

> AXI over Ethernet

This work revolves around using Programmable Logic to export bus-level
memory transactions packed into an Ethernet frame and sent through
dedicated low-latency high-bandwidth external optical interfaces. This would
allow for methods such as Control Flow Integrity checks, Digital Twinning,
and Remote Memory Access to happen transparently without code/kernel
instrumentation. In the future, the work will be expanded to handle coherent
bus traffic that is architecture agnostic.

> Burning Fetch Execution: A Framework for Zero-Trust Multi-Party
Confidential Computing

This work tackles the gap in existing safeguarding technology by avoiding
byte-level decryption until it is immediately fetched by the processor, only to
burn it right after. We perform on-the-fetch data decryption, immediately
followed by burning, i.e., erasing right after processing cycles. Thus, BFX
minimizes the existence of sensitive data in-use. BFX does not demand new
processing hardware units nor requires restructuring application software.

47

Teaching and Mentoring
Spring 2024 -
Ongoing

F1Tenth Directed
Study Mentor

Boston University Boston, MA, USA

• Assisting undergraduates with hardware associated with F1tenth related
projects

• Teaching undergraduates the basics of electronic design and electronic
components

• Ensuring the safety of undergraduates when handling high current and
sensitive electronics

Spring 2024 Persistence of Vision
Directed Study Mentor

Boston University Boston, MA, USA

• Guiding undergraduates on designing low-level software with respect to the
underlying hardware with a focus on timing requirements for a Persistence
of Vision (PoV) Display

• Assisting undergraduates understand and debug the gap between code and
physical outputs

• Customizing the circuit layout for additional features or corrections from
previous student attempts

Fall 2023 UR2PhD Mentor Computing Research
Association

Boston University

• Attended weekly meeting to learn about mentoring skills and developed a
mentoring style

• Lead weekly individual and group meetings with four undergraduates to
develop hardware/software modules for a Persistence of Vision (PoV)
Display

• Designed or sourced circuit boards, electrical components, and hardware
after verifying compatibility and tolerances

• Guided undergraduates on how to search, read, and verify academic research
papers

48

Spring 2023 PL-Ethernet Directed
Study Mentor

Boston University Boston, MA, USA

• Taught undergraduates the basics of Vivado Design Suite and functions of
FPGAs

• Delegated tasks to undergraduates in order to debug and learn about
Processor, FPGA, and ethernet Connectivity

• Arranged weekly meeting to discuss undergraduate findings on particular
modules and board designs while evaluating the proceeding goals

Affiliations
Cyber Physical Systems Lab Alter Byte Corp

Professional Experience
2019-2020 Student Technical

Director
Alternate College
Theatre

Worcester, MA, USA

• Collaborated with the college technical director and student scene designer
to construct sets

• Created schematics to follow when cutting lumber and assembling pieces of
the set

• Coordinated groups of students on tasks to assemble and furnish sets
• Communicated with directors and set designers on progress of set and

accommodated any desired details or changes

2019-2020 Shop Assistant College of the Holy Cross
Fenwick Theatre

Worcester, MA, USA

• Assisted in creating sets for the department plays by following a schematic,
manufacturing, and assembling components, and compensating for any error
along the way

• Guided assistants on correct use of tools and provided advanced techniques
to address certain cases

• Relayed instructions from Technical Director to sub group(s)
• Provided assistance to other technical teams within the theatre

49

Fall 2017-2019 Resident
Assistant

College of the Holy
Cross

Worcester, MA,
USA

• Acted as a resource to and ensured the safety of 38 students in their
residence hall

• Planned events with Resident Assistant team members for residents and
building

• Performed safety checks and engaged with residents throughout the semester
• Relayed information bi-weekly regarding the dormitory and residents in a

concise manner to dormitory supervisor

Honors & Awards
• Holy Cross Grant
• 2024 (TII) GENZERO Workshop Best Presentation Award

Skills
• Programming: C, C++, Java, Python, SQL
• Design: System Verilog, Verilog, CAD, PCB design, Carpentry, Additive/

Subtractive Fabrication
• Hardware Debugging: Xilinx Integrated Logic Analyzer, ARM Coresight,

Circuit Debugging
• System Administration: Network Architecture, Virtual Machine

Management

Languages
English
[Native]

Portuguese
[Fluent]

Spanish
[Fluent]

References
References available upon request.

50

	Introduction
	Motivation
	Related Works

	Design
	Network Design Overview
	Network Requirements
	Consumer Parsing

	Producer Design Overview
	PL Design Overview
	Memory-mapped Programmable Logic Block
	Dedicated hardware
	Observer Mechanism

	Implementation Overview
	System Overview
	ZCU102 Overview
	Advanced eXtensible Interface

	FPGA Overview

	Implementation Details
	Consumer In-depth view
	Memory and Buffers
	Parsing and visualization

	ZCU Details
	General Configuration
	Memory Alignment and Caching

	FPGA In-depth view
	AXI4Full to AXI4Stream translation
	Frame Former
	10g/25g Ethernet Subsystem

	Evaluation
	Evaluation Infrastructure
	FPGA Utilization and Limits
	Verification of Operation Characteristics
	Preliminary Evaluation
	Pragmatic Benchmarks
	Tracing and Visualiization
	Limitations

	Future Works
	Conclusions
	Additional Results
	References
	Curriculum Vitae

